印刷できる高性能n型有機半導体単結晶を開発-有機IoTデバイスの実現に期待 -【日本の研究.com】


印刷できる高性能n型有機半導体単結晶を開発
-有機IoTデバイスの実現に期待-
https://research-er.jp/articles/view/94038

>大面積化可能な印刷法により成膜したバンド伝導性単結晶薄膜を用い、メガヘルツ帯で動作する高速n型トランジスタの開発に成功しました。
>既存のp型有機半導体と組み合わせることで有機トランジスタの開発が加速され、IoT社会に欠かせないRFIDタグなどのデバイス応用に期待が持たれます。

>有機半導体は軽量性、機械的柔軟性、印刷適合性などの特長から、次世代の有機エレクトロニクスの重要な電子材料として期待されています。一方で、分子間を電子が飛び移る(ホッピング伝導)ことで電気が流れる有機半導体は移動度が低いことが実用に向けての課題でした。
しかし最近では、有機半導体でも無機半導体のようにバンド伝導性を示す物質が開発され、10

>cm2V1s1以上の高移動度が実現されています。高移動度は高速トランジスタに欠かせない重要な特性であるため、これらの有機半導体によって高速有機トランジスタの実用化への期待が高まっています。

しかしながら、このような有機半導体のほとんどが正孔輸送性(p型)であり、低消費電力化に向けた相補型有機デバイスを作製するためには、電子輸送性(n型)有機半導体材料の開発が必要とされていました。
n型有機半導体は、p型有機半導体に比べて、大気安定性の確保や、効率良い電気伝導経路の形成が難しいため開発が遅れていました。

>今後、プロセス技術の改良による動作周波数帯の拡張や、p型有機トランジスタと組み合わせることにより、高速駆動可能な相補型有機デバイスを作製し、IoT社会の実現に向けたフレキシブルなRFIDタグなどの開発が期待されます。

>実際に、印刷後に微細加工した有機単結晶薄膜で、大気下において短波帯の4
>MHzで動作するn型有機トランジスタを開発することに成功しました(図2)。今回のデバイス作製には、単結晶薄膜の大面積印刷に有望な連続エッジキャスト法(J
>)や、フォトリソグラフィ技術(注10)を用いることが可能であったため、今後大規模集積への拡張性が示唆されます。

>今後は、印刷技術を含むデバイスプロセス技術の向上に伴い、より高周波数帯での動作が見込まれております。また、単結晶p型有機トランジスタと組み合わせることによる相補型有機デバイスへの応用研究も進めており、有機IoTデバイスの開発に繋がることが期待されます。

_____


コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

||||||||||||||